Counter-current distribution with a varying partition ratio

In a counter-current distribution in a Craig machine with a moving upper phase of constant solvent composition, and a stationary lower phase the composition of which is a function of the tube number r only (the first tube being No. I), the fraction R_{r} of solute in tube number γ that is transferred to tube number ($\gamma+\mathrm{I}$) at any stage is given by $\alpha F_{r} /\left(\alpha F_{r}+1\right)$, where α is the ratio (volume of moving phase)/ (volume of stationary phase), and F_{r} is the effective partition ratio for the solute in tube number r, i.e. $F_{r}=$ (total concentration of solute in upper phase)/(total concentration of solute in lower phase), where "total concentration" refers to the sum of the concentrations (weight/volume) of all the species that will later be isolated as "solute". Consideration of repeated transfers leads to the result that the fraction of the solute in tube number r after n transfers, $P_{n, r}$, is given by the equation

$$
\begin{equation*}
P_{n, r}=Q_{n, r} \cdot{ }_{j}^{r} \bar{\Pi}_{0}^{\mathrm{M}} R_{j} \tag{I}
\end{equation*}
$$

where

$$
Q_{n, r}=Q_{n-1, r-1}+\left(I-R_{r}\right) Q_{n-1, r} ;
$$

with the boundary conditions: $\varepsilon_{n, 0}=0 ; Q_{0,1}=\mathrm{I}$, otherwise $Q_{0, r}=0$ (equivalent to the condition that all the solute is put into tube No. I at the beginning of the run);

$$
R_{0}=\mathrm{I}, R_{j}(j=\mathrm{I}, 2 \ldots) \text { being defined above }
$$

Eqn. (1) is a general one. Replacing R_{j} therein ($j \geqslant \mathrm{x}$) by a constant gives the binomial distribution described by Craig and Craig ${ }^{1}$; and if the moving phase is the one of varying composition, Eq. (I) can be used with the tubes numbered in reverse order, with the tube containing the furthest-moved solvent as No. I.

The distribution described above can be evaluated only if R is a known function of γ. This is the case, in principle, if the solute is a base and the aqueous (lower) phase has a different pH in each tube. Let the free base have a partition coefficient f (f is independent of pH), and acidic dissociation constant K; then, if in the r th tube the hydrogen ion concentration is $H_{r}, F_{r}=f K /\left(K+H_{r}\right)$. If there is a constant pH decrease, δ, between each tube, $H_{r}=H_{1} \cdot \mathrm{IO}^{\prime s}$. Table I shows the calculated distributions after 5 , 10 and 15 transfers with values $\alpha=\mathrm{I}, f=9, H_{1}=10^{-8}, K=10^{-6}$, $\delta=0.5$, and Table II, column x, the positions of the centre of gravity of the banddefined as $\Sigma\left(r \cdot P_{n, r}\right)$ - after each transfer.

The distribution after many transfers is tedious to calculate unless a computor program is available, but the approximate position of the centre of gravity of the distribution can be calculated by treating R as a continuous function of γ. Then, for the solute to move a small distance $\mathrm{d} r$, the solvent must move a distance $\mathrm{d} r / R(r)$; and for the solute to move a distance r the solvent must move a distance $\int \mathrm{d} r / R(r)=$ $T(r)$. After n transfers the solvent front has moved past n tubes, and if the solute has been moved past j tubes, then

$$
\begin{equation*}
\int_{v=0}^{=} \int_{0}^{j} \mathrm{~d} v / R(v)=n \tag{2}
\end{equation*}
$$

TABLE I
Calculated distribution of a model base

r	$P_{5, r}$	$P_{10, r}$	$P_{15, r}$
1	$-*$	-	-
2	-	-	-
3	0.009	-	-
4	0.087	-	
5	0.390	0.001	-
6	0.513	0.017	-
7	zero	0.222	0.014
8	zero	0.521	0.238
9	zero	0.226	0.570
10	zero	0.013	0.169
11	zero	-	0.009
12	zero	zero	-
13	zero	zero	-
14	zero	zero	-
15	zero	zero	-
16		zero	
			-

* Less than 0.001 .

TABLE II
POSITION OF THE CENTRE OF GRAVITY OF THE DISTRIBUTION CALCULATED FROM EQNS. (I) AND (2)

n	$E q n .(\mathrm{I})$	$E q n .(2)$
1	1.9	1.9
2	2.8	2.8
3	3.7	3.7
4	4.6	4.6
5	5.4	5.4
6	6.2	6.1
7	6.8	6.7
8	7.3	7.2
9	7.7	7.5
10	8.0	7.8
11	8.3	8.1
12	8.6	8.2
13	8.8	8.3
14	8.9	8.5
15		8.6

and the solute distribution will have a maximum in tube $(j+1)$ (if the first tube is No. I).

For a base such as the one above

$$
R(\gamma)=\alpha f K / K(\alpha f+\mathrm{r})+H_{1} \cdot \mathbf{I} o^{\prime} \delta,
$$

whence

$$
T(\nu)=\gamma(\mathrm{I}+\mathrm{I} / \alpha f)+1 \mathrm{o}^{r \delta}\left(0.4343 H_{1} / \alpha f K \delta\right) .
$$

Inserting the values quoted above for these constants,

$$
T(\gamma)=1 . \operatorname{try} v+0.653 \cdot 100.5 r-4
$$

J. Chromatog., 21 (1966) 119-12I
and values of $(j+1$) for $n=1-15$ are given in column 2 of Table II, for comparison with the figures derived from Eqn. (I).

Counter-current distribution of alkaloids in a solvent system of this type has been described ${ }^{2}$, with benzene as the non-aqueous phase, and, of the experiments whose results are summarised in Fig. I-4 in this paper, three can be used as a check on Eqn. (2) above. In this paper the tubes are numbered from zero, not from one; therefore, in Table III, H_{1} is replaced by H_{0}, and the tube containing the most

TABLE III
calculated and observed values of j for some alkaloids

Alkaloids	$S_{0}{ }^{\text {n }}$	$S_{w^{\text {a }}}$	f	K^{\square}	$F i g$ No.	H_{0}	α	δ	n	$\frac{j^{\text {c }}}{}$	Calc.
Brucine	I. 86	0.0884, 0	18.6	1.09. 10^{-8}	I	10^{-108}	I	0.33	25	I_{3}	13
Hyclrastine	$9.75{ }^{\prime \prime}$	0.033	296	$5.88 \cdot \mathrm{ro}^{-7}$	I	10^{-10}	I	0.33	25	22	20
Caffeine	$0.98{ }^{\text {h }}$	I. $34^{\text {d, }} \mathrm{h}$	0.64	1.34	3	10^{-8}	I	0.33	20	17	8
					4	10^{-7}	1	0.20	24	21	9
					4	10^{-7}	I	0.20	35	24	r_{4}
					4	10^{-7}	I	0.20	24		7
Strychnine	0.77	0.021	32.3	1.00 10^{-8}	4	10^{-7}	I	0.20	35	9	8

a Values refer to 20°.
${ }^{6}$ Seidell quotes $K_{b} ; K$ taken as $10^{-14} / K_{b}$.

- To the nearest integer.
d Anhydrous; calculated from the value for the hydrated base.
- Suitable mean value.
: The text ${ }^{2}$ quotes 10^{-0}, but the quoted tube numbers, pH values, and the value for δ fit only for $H_{0}=10^{-10}$.
\& Calculated from the solubility in g per 100 g of saturated solution.
h Interpolated.
solute is j, not $(j+I)$. For none of the alkaloids used is the value of f available; but the density of benzene at 20° is 0.88 and if S_{w}, S_{b}, are the solubilities of the bases in g per 100 g of water, or benzene, respectively, f can be taken as $\left(S_{v} \times 0.88\right) / S_{2 v}$, provided that the only solute species present in the two phases are the free base and its protonated form. Values for S_{w}, S_{v}, and K are available ${ }^{3}$, and are given in Table III.

Eqn. (2) thus has some predictive value for three of the four alkaloids, and for caffeine, for which it fails, the value of f is not that given by the expression above, but is of the order of 6 in these experiments.

I thank Professor M. Gordon for helpful discussion.
Department of Pure and Applied Chemistry,
J. A. D. Jeffreys

The University of Strathclyde, Glasgow (Great Britain)

[^0]Received July 2nd, I965

[^0]: i L. C. Craig and D. Craig, in A. Weissberger (Editor), Technique of Organic Chemistry, Vol. III, Interscience, New York, 1950, p. 17 I .
 2 J. A. Coch, E. C. de Ferrari and U. Delbene, J. Chromatog., 17 (1965) 193.

 - 3 A. Serdell, Solubilities of Organic Compounds, Vol. II, 3rd Ed., Van Nostrand, New York, 1941, pp. 6i9, 613, 8ı2, 820.

