Counter-current distribution with a varying partition ratio

In a counter-current distribution in a Craig machine with a moving upper phase of constant solvent composition, and a stationary lower phase the composition of which is a function of the tube number r only (the first tube being No. I), the fraction R_r of solute in tube number r that is transferred to tube number (r + I) at any stage is given by $\alpha F_r/(\alpha F_r + I)$, where α is the ratio (volume of moving phase)/ (volume of stationary phase), and F_r is the effective partition ratio for the solute in tube number r, *i.e.* $F_r = (\text{total concentration of solute in upper phase)/(total con$ centration of solute in lower phase), where "total concentration" refers to the sumof the concentrations (weight/volume) of all the species that will later be isolated as"solute". Consideration of repeated transfers leads to the result that the fraction ofthe solute in tube number <math>r after n transfers, $P_{n,r}$, is given by the equation

$$P_{n,r} = Q_{n,r} \cdot \prod_{j=0}^{r=1} R_j$$

where

 $Q_{n,r} = Q_{n-1,r-1} + (I - R_r)Q_{n-1,r};$

with the boundary conditions: $Q_{n,0} = 0$; $Q_{0,1} = I$, otherwise $Q_{0,r} = 0$ (equivalent to the condition that all the solute is put into tube No. I at the beginning of the run);

 $R_0 = I, R_j (j = I, 2...)$ being defined above. Eqn. (I) is a general one. Replacing R_j therein $(j \ge I)$ by a constant gives the binomial distribution described by CRAIG AND CRAIG¹; and if the moving phase is the one of varying composition, Eq. (I) can be used with the tubes numbered in reverse order, with the tube containing the furthest-moved solvent as No. I.

The distribution described above can be evaluated only if R is a known function of r. This is the case, in principle, if the solute is a base and the aqueous (lower) phase has a different pH in each tube. Let the free base have a partition coefficient f (f is independent of pH), and acidic dissociation constant K; then, if in the rth tube the hydrogen ion concentration is H_r , $F_r = fK/(K + H_r)$. If there is a constant pH decrease, δ , between each tube, $H_r = H_1 \cdot 10^{r\delta}$. Table I shows the calculated distributions after 5, 10 and 15 transfers with values $\alpha = 1$, f = 9, $H_1 = 10^{-8}$, $K = 10^{-6}$, $\delta = 0.5$, and Table II, column 1, the positions of the centre of gravity of the band defined as $\Sigma(r \cdot P_{n,r})$ — after each transfer.

The distribution after many transfers is tedious to calculate unless a computor program is available, but the approximate position of the centre of gravity of the distribution can be calculated by treating R as a continuous function of r. Then, for the solute to move a small distance dr, the solvent must move a distance dr/R(r); and for the solute to move a distance r the solvent must move a distance $\int dr/R(r) =$ T(r). After n transfers the solvent front has moved past n tubes, and if the solute has been moved past j tubes, then

$$\int_{r}^{j} dr/R(r) = n$$

J. Chromatog., 21 (1966) 119-121

a subble a

(2)

 (\mathbf{I})

TABLE I

CALCULATED DISTRIBUTION OF A MODEL BASE

r	$P_{5,r}$	$P_{10,r}$	P15,r		
I	· *				
2					
3	0.009				
4	0.087		·		
5	0.390	0.001			
ō	0.513	0.017			
7	zero	0.222	0.014		
8	zero	0.521	0.238		
9	zero	0.226	0.570		
10	zero	0.013	0.169		
II	zero		0.009		
12	zero	zero			
13	zero	zero			
14	zero	zero			
15	zero	zero			
16	zero	zero			

Less than 0.001.

TABLE II POSITION OF THE CENTRE OF GRAVITY OF THE DISTRIBUTION CALCULATED FROM EQNS. (1) AND (2)

n	<i>Eqn.</i> (1)	Eqn. (2)		
I	I.Q	I.Q		
2	2.8	2.8		
3	3.7	3.7		
4	4.6	4.6		
5	5.4	5.4		
6	6.2	6.1		
7	6.8	6.7		
8	7.3	7.2		
9	7.7	7.5		
10	8.0	7.8		
II	8.3	8.1		
12	8.5	8.2		
13	8.6	8.3		
14	8.8	8.5		
15	8. 9	8. 6		

and the solute distribution will have a maximum in tube (j + 1) (if the first tube is No. 1).

For a base such as the one above

 $R(r) = \alpha f K / K (\alpha f + 1) + H_1 \cdot 10^{r\delta},$

whence

 $T(r) = r(1 + 1/\alpha f) + 10^{r\delta} (0.4343 H_1/\alpha f K \delta).$

Inserting the values quoted above for these constants,

 $T(r) = 1.111 r + 0.653 \cdot 10^{0.5} r^{-4}$

J. Chromatog., 21 (1966) 119-121

NOTES

and values of (j + 1) for n = 1-15 are given in column 2 of Table II, for comparison with the figures derived from Eqn. (1).

Counter-current distribution of alkaloids in a solvent system of this type has been described², with benzene as the non-aqueous phase, and, of the experiments whose results are summarised in Fig. 1-4 in this paper, three can be used as a check on Eqn. (2) above. In this paper the tubes are numbered from zero, not from one; therefore, in Table III, H_1 is replaced by H_0 , and the tube containing the most

TABLE III

CALCULATED AND OBSERVED VALUES OF j FOR SOME ALKALOIDS

Alkaloids	S_b^{a}	Swa	f	K ^b	Fig. No.	H ₀	œ	δ	n	j°.	
										Obs.	Calc.
Brucine	1.86	0.0884.0	18.6	1.09 · 10 ⁻⁸	Ĩ	10-10f	I	0.33	25	13	13
Hydrastine	9.75 [#]	0.033	296	5.88.10-7	I	10-10	I	0.33	25	22	20
Caffeine	0.9 ⁸ h	1.34 ^d , h	0.64	1.34	3	10 ⁻⁸	I	0.33	20	17	8
					4	10-7	I	0.20	24	21	9
					4	10-7	I	0.20	35	24	14
			· ·		4	10-7	I	0.20	24	7	7
Strychnine	0.77	0.021	32.3	1.00 · 10 ⁻⁸	4	10-7	I	0.20	35	9	8

^a Values refer to 20°.

^b Seidell quotes K_b ; K taken as $10^{-14}/K_b$.

• To the nearest integer.

d Anhydrous; calculated from the value for the hydrated base.

^e Suitable mean value.

¹ The text² quotes 10⁻⁹, but the quoted tube numbers, pH values, and the value for δ fit only for $H_0 = 10^{-10}$.

⁴ Calculated from the solubility in g per 100 g of saturated solution.

h Interpolated.

solute is j, not (j + 1). For none of the alkaloids used is the value of f available; but the density of benzene at 20° is 0.88 and if S_w , S_b , are the solubilities of the bases in g per 100 g of water, or benzene, respectively, f can be taken as $(S_b \times 0.88)/S_w$, provided that the only solute species present in the two phases are the free base and its protonated form. Values for S_{w} , S_{b} , and K are available³, and are given in Table III.

Eqn. (2) thus has some predictive value for three of the four alkaloids, and for caffeine, for which it fails, the value of f is not that given by the expression above, but is of the order of 6 in these experiments.

I thank Professor M. GORDON for helpful discussion.

Department of Pure and Applied Chemistry, The University of Strathclyde, Glasgow (Great Britain) J. A. D. JEFFREYS

I L. C. CRAIG AND D. CRAIG, in A. WEISSBERGER (Editor), Technique of Organic Chemistry, Vol. III, Interscience, New York, 1950, p. 171.

2 J. A. COCH, E. C. DE FERRARI AND U. DELBENE, J. Chromatog., 17 (1965) 193. 3 A. SEIDELL, Solubilities of Organic Compounds, Vol. II, 3rd Ed., Van Nostrand, New York, 1941, pp. 619, 613, 812, 820.

Received July 2nd, 1965

J. Chromalog., 21 (1966) 119-121